Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38653894

RESUMO

Raising soil contamination with cadmium (Cd2+) and salinization necessitates the development of green approaches using bio-elicitors to ensure sustainable crop production and mitigate the detrimental health impacts. Two field trials were carried out to study the individual and combined effects of foliage spraying of Moringa leaf extract (MLE) and soil application of effective microorganisms (EMs) on the physio-biochemical, osmolytes, antioxidants, and performance of sweet potato grown in Cd2+-contaminated salty soil (Cd2+ = 17.42 mg kg-1 soil and soil salinity ECe = 7.42 dS m-1). Application of MLE, EMs, or MLE plus EMs significantly reduced the accumulation of Cd2+ in roots by 55.6%, 50.0%, or 68.1% and in leaves by 31.4%, 27.6%, or 38.0%, respectively, compared to the control. Co-application of MLE and EMs reduced Na+ concentration while substantially raising N, P, K+, and Ca2+ acquisition in the leaves. MLE and EMs-treated plants exhibited higher concentrations of total soluble sugar by 69.6%, free proline by 47.7%, total free amino acids by 29.0%, and protein by 125.7% compared to the control. The enzymatic (SOD, APX, GR, and CAT) and non-enzymatic (phenolic acids, GSH, and AsA) antioxidants increased in plants treated with MLE and/or EMs application. Applying MLE and/or EMs increased the leaf photosynthetic pigment contents, membrane stability, relative water content, water productivity, growth traits, and tuber yield of Cd2+ and salt-stressed sweet potato. Consequently, the integrative application of MLE and EMs achieved the best results exceeding the single treatments recommended in future application to sweet potato in saline soil contaminated with Cd2+.

2.
Sci Rep ; 13(1): 19876, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963917

RESUMO

The impact of bio-organic amendments on crop production is poorly understood in saline calcareous soils. The aim in the present study was to determine the effects of the application of organic manure along with lactic acid bacteria (LAB) on soil quality, and morpho-physio-biochemical responses, seed yield (SY) and essential oil yield (EOY) of fennel plants (Foeniculum vulgare Mill.) grown in saline calcareous soils. Eight treatments of farmyard manure (FM) or poultry manure (PM) individually or combined with Lactobacillus plantarum (Lp) and/or Lactococcus lactis (Ll) were applied to saline calcareous soil in two growing seasons. Either FM or PM combined with LAB had beneficial effects on lowering ECe, pH and bulk density and increasing total porosity, organic matter, and water and nutrient retention capacities in addition to total bacterial population in the soil. Growth, nutrient uptake, SY and EOY of plants were also enhanced when fennel seeds were inoculated with Lp and/or Ll and the soil was amended with any of the organic manures under unfavorable conditions. Compared to control (no bio-organic amendments), FM + Lp + Lt or PM + Lp + Lt treatment signficantlly (P ≤ 0.05) increased plant height by 86.2 or 65.0%, total chlorophyll by 73 or 50%, proline by 35 or 45%, glutathione by 100 or 138%, SY by 625 or 463% and EOY by 300 or 335%, respectively, in fennel plants. Co-application of the naturally occurring microorganisms (i.e., LAB) and organically-derived, nutrient-rich fertilizer (i.e., FM or PM) is recommended to improve yield of fennel plants in saline calcareous soils.


Assuntos
Foeniculum , Solo , Animais , Solo/química , Esterco , Sementes , Aves Domésticas
3.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836147

RESUMO

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

4.
Sci Rep ; 13(1): 13935, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626070

RESUMO

The aromatic fennel plant (Foeniculum vulgare Miller) is cultivated worldwide due to its high nutritional and medicinal values. The aim of the current study was to determine the effect of the application of bio-organic fertilization (BOF), farmyard manure (FM) or poultry manure (PM), either individually or combined with Lactobacillus plantarum (LP) and/or Lactococcus lactis (LL) on the yield, chemical composition, and antioxidative and antimicrobial activities of fennel seed essential oil (FSEO). In general, PM + LP + LL and FM + LP + LL showed the best results compared to any of the applications of BOF. Among the seventeen identified FSEO components, trans-anethole (78.90 and 91.4%), fenchone (3.35 and 10.10%), limonene (2.94 and 8.62%), and estragole (0.50 and 4.29%) were highly abundant in PM + LP + LL and FM + LP + LL, respectively. In addition, PM + LP + LL and FM + LP + LL exhibited the lowest half-maximal inhibitory concentration (IC50) values of 8.11 and 9.01 µg mL-1, respectively, compared to L-ascorbic acid (IC50 = 35.90 µg mL-1). We also observed a significant (P > 0.05) difference in the free radical scavenging activity of FSEO in the triple treatments. The in vitro study using FSEO obtained from PM + LP + LL or FM + LP + LL showed the largest inhibition zones against all tested Gram positive and Gram negative bacterial strains as well as pathogenic fungi. This suggests that the triple application has suppressive effects against a wide range of foodborne bacterial and fungal pathogens. This study provides the first in-depth analysis of Egyptian fennel seeds processed utilizing BOF treatments, yielding high-quality FSEO that could be used in industrial applications.


Assuntos
Anti-Infecciosos , Foeniculum , Lactobacillus plantarum , Lactococcus lactis , Óleos Voláteis , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Fertilizantes , Esterco , Sementes , Anti-Infecciosos/farmacologia
5.
Metabolites ; 13(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37512523

RESUMO

Date palm (Phoenix dactylifera L.) fruits contain high concentrations of phenolic compounds, particularly flavonoids and other micronutrients, which impact human health due to their potent antioxidant, anti-inflammatory, and anticancer characteristics. In the present study, the effect of ethyl acetate, hydroethanol, hydromethanol, and aqueous extract from three date palm varieties (i.e., Ajwa, Siwi, and Sukkari) on phytochemical profiles and antioxidant and anticancer activities was investigated. Fruit extracts were screened for their antioxidant activity using the DPPH· method. Phenolic constituents were quantified and identified using HPLC-DAD. Extracts (ethyl acetate, hydroethanol, and hydromethanol) were assessed for cytotoxicity on nine human cancer cell lines, i.e., MG-63, HCT116, MCF7, MDA-MB-231, HEPG2, HUH7, A549, H460, and HFB4, using the sulphorhodamine-B (SRB) assay. Results showed that the ethyl acetate extract of the Sukkari fruits has the greatest antioxidant potential with an IC50 value of 132.4 ± 0.3 µg·mL-1, while the aqueous extract of Ajwa date fruits exhibited the lowest antioxidant effect with an IC50 value of 867.1 ± 0.3 µg·mL-1. The extracts exhibited potent to moderate anticancer activities against the investigated cancer cell line in a source-dependent manner. Methanol extract of Siwi fruits exhibited the most potent anticancer activity (IC50 = 99 ± 1.6 µg·mL-1), followed by the same extract of Sukkari fruits with an IC50 value of 119 ± 3.5 µg·mL-1 against the cell line of human breast cancer (MDA-MB-231). Additionally, principal component analysis (PCA) was investigated to determine the relationship among the investigated traits and treatments. Our findings reveal that date palm fruit-derived extracts are excellent sources of biologically active constituents and substantiate their potential use in new anticancer strategies from natural resources.

6.
Mar Environ Res ; 190: 106068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421706

RESUMO

Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Fungos/metabolismo
7.
Poult Sci ; 102(9): 102786, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454641

RESUMO

Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.


Assuntos
Infecções por Campylobacter , Campylobacter , Gastroenterite , Animais , Humanos , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária , Aves Domésticas , Galinhas , Prevalência , Gastroenterite/veterinária , Resistência Microbiana a Medicamentos , Carne , Microbiologia de Alimentos , Contaminação de Alimentos
8.
PeerJ ; 11: e15343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366423

RESUMO

Globally, salinity and drought are severe abiotic stresses that presently threaten vegetable production. This study investigates the potential exogenously-applied glutathione (GSH) to relieve water deficits on Phaseolus vulgaris plants cultivated in saline soil conditions (6.22 dS m-1) by evaluating agronomic, stability index of membrane, water satatus, osmolytes, and antioxidant capacity responses. During two open field growing seasons (2017 and 2018), foliar spraying of glutathione (GSH) at 0.5 (GSH1) or 1.0 (GSH1) mM and three irrigation rates (I100 = 100%, I80 = 80% and I60 = 60% of the crop evapotranspiration) were applied to common bean plants. Water deficits significantly decreased common bean growth, green pods yield, integrity of the membranes, plant water status, SPAD chlorophyll index, and photosynthetic capacity (Fv/Fm, PI), while not improving the irrigation use efficiency (IUE) compared to full irrigation. Foliar-applied GSH markedly lessened drought-induced damages to bean plants, by enhancing the above variables. The integrative I80 + GSH1 or GSH2 and I60 + GSH1 or GSH2 elevated the IUE and exceeded the full irrigation without GSH application (I100) treatment by 38% and 37%, and 33% and 28%, respectively. Drought stress increased proline and total soluble sugars content while decreased the total free amino acids content. However, GSH-supplemented drought-stressed plants mediated further increases in all analyzed osmolytes contents. Exogenous GSH enhanced the common bean antioxidative machinery, being promoted the glutathione and ascorbic acid content as well as up-regulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase. These findings demonstrate the efficacy of exogenous GSH in alleviating water deficit in bean plants cultivated in salty soil.


Assuntos
Antioxidantes , Phaseolus , Antioxidantes/metabolismo , Phaseolus/metabolismo , Água/metabolismo , Glutationa/metabolismo , Solo
9.
Front Plant Sci ; 13: 946717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407622

RESUMO

Plants are subjected to a wide range of abiotic stresses, such as heat, cold, drought, salinity, flooding, and heavy metals. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability. In this regard, nanoparticles (NPs) can help combat nutrient deficiencies, promote stress tolerance, and improve the yield and quality of crops. This can be achieved by stimulating the activity of certain enzymes, increasing the contents (e.g., chlorophyll) and efficiency of photosynthesis, and controlling plant pathogens. The use of nanoscale agrochemicals, including nanopesticides, nanoherbicides, and nanofertilizers, has recently acquired increasing interest as potential plant-enhancing technologies. This review acknowledges the positive impacts of NPs in sustainable agriculture, and highlights their adverse effects on the environment, health, and food chain. Here, the role and scope of NPs as a practical tool to enhance yield and mitigate the detrimental effects of abiotic stresses in crops are described. The future perspective of nanoparticles in agriculture has also been discussed.

10.
Front Plant Sci ; 13: 923880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275556

RESUMO

Plant diseases and pests are risk factors that threaten global food security. Excessive chemical pesticide applications are commonly used to reduce the effects of plant diseases caused by bacterial and fungal pathogens. A major concern, as we strive toward more sustainable agriculture, is to increase crop yields for the increasing population. Microbial biological control agents (MBCAs) have proved their efficacy to be a green strategy to manage plant diseases, stimulate plant growth and performance, and increase yield. Besides their role in growth enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens. As biofertilizers and biopesticides, PGPR and PGPF are considered as feasible, attractive economic approach for sustainable agriculture; thus, resulting in a "win-win" situation. Several PGPR and PGPF strains have been identified as effective BCAs under environmentally controlled conditions. In general, any MBCA must overcome certain challenges before it can be registered or widely utilized to control diseases/pests. Successful MBCAs offer a practical solution to improve greenhouse crop performance with reduced fertilizer inputs and chemical pesticide applications. This current review aims to fill the gap in the current knowledge of plant growth-promoting microorganisms (PGPM), provide attention about the scientific basis for policy development, and recommend further research related to the applications of PGPM used for commercial purposes.

11.
Front Vet Sci ; 9: 918961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118334

RESUMO

Poultry production contributes markedly to bridging the global food gap. Many nations have limited the use of antibiotics as growth promoters due to increasing bacterial antibiotic tolerance/resistance, as well as the presence of antibiotic residues in edible tissues of the birds. Consequently, the world is turning to use natural alternatives to improve birds' productivity and immunity. Withania somnifera, commonly known as ashwagandha or winter cherry, is abundant in many countries of the world and is considered a potent medicinal herb because of its distinct chemical, medicinal, biological, and physiological properties. This plant exhibits antioxidant, cardioprotective, immunomodulatory, anti-aging, neuroprotective, antidiabetic, antimicrobial, antistress, antitumor, hepatoprotective, and growth-promoting activities. In poultry, dietary inclusion of W. somnifera revealed promising results in improving feed intake, body weight gain, feed efficiency, and feed conversion ratio, as well as reducing mortality, increasing livability, increasing disease resistance, reducing stress impacts, and maintaining health of the birds. This review sheds light on the distribution, chemical structure, and biological effects of W. somnifera and its impacts on poultry productivity, livability, carcass characteristics, meat quality, blood parameters, immune response, and economic efficiency.

12.
Front Plant Sci ; 13: 883274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909720

RESUMO

The application of bio- and nanofertilizers are undoubtedly opening new sustainable approaches toward enhancing abiotic stress tolerance in crops. In this study, we evaluated the application of effective microorganisms (EMs) of five groups belonging to photosynthetic bacteria, lactic acid bacteria, yeast, actinobacteria, and fermenting fungi combined with magnesium oxide (MgO) nanoparticles (MgO-NP) on the growth and productivity of sweet potato plants grown in salt-affected soils. In two field experiments carried out in 2020 and 2021, we tested the impacts of EMs using two treatments (with vs. without EMs as soil drench) coupled with three foliar applications of MgO-NP (0, 50, and 100 µg ml-1 of MgO, representing MgO-NP0, MgO-NP50, and MgO-NP100, respectively). In our efforts to investigate the EMs:MgO-NP effects, the performance (growth and yield), nutrient acquisition, and physio-biochemical attributes of sweet potatoes grown in salt-affected soil (7.56 dS m-1) were assessed. Our results revealed that salinity stress significantly reduced the growth parameters, yield traits, photosynthetic pigment content (chlorophylls a and b, and carotenoids), cell membrane stability, relative water content, and nutrient acquisition of sweet potatoes. However, the EMs+ and/or MgO-NP-treated plants showed high tolerance to salt stress, specifically with a relatively superior increase when any of the biostimulants were combined. The application of EMs and/or MgO-NP improved osmotic stress tolerance by increasing the relative water content and membrane integrity. These positive responses owed to increase the osmolytes level (proline, free amino acids, and soluble sugars) and antioxidative compounds (non-enzymatic concentration, enzymatic activities, phenolic acid, and carotenoids). We also noticed that soil salinity significantly increased the Na+ content, whereas EMS+ and/or MgO-NP-treated plants exhibited lower Na+ concentration and increased K+ concentration and K+/Na+ ratio. These improvements contributed to increasing the photosynthetic pigments, growth, and yield under salinity stress. The integrative application of EMs and MgO-NP showed higher efficacy bypassing all single treatments. Our findings indicated the potential of coapplying EMs and MgO-NP for future use in attenuating salt-induced damage beneficially promoting crop performance.

13.
Antioxidants (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892646

RESUMO

Nanoparticles (NPs) exhibit distinct features compared to traditional physico-chemical synthesis and they have many applications in a wide range of fields of life sciences such as surface coating agents, catalysts, food packaging, corrosion protection, environmental remediation, electronics, biomedical and antimicrobial. Green-synthesized metal NPs, mainly from plant sources, have gained a lot of attention due to their intrinsic characteristics like eco-friendliness, rapidity and cost-effectiveness. In this study, zinc oxide (ZnO) NPs have been synthesized employing an aqueous leaf extract of Pelargonium odoratissimum (L.) as a reducing agent; subsequently, the biosynthesized ZnO NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). Moreover, aqueous plant leaf extract was subjected to both qualitative and quantitative analysis. Antioxidant activity of ZnO NPs was assessed by DPPH assay, with varying concentrations of ZnO NPs, which revealed scavenging activity with IC50 = 28.11 µg mL-1. Furthermore, the anti-bacterial efficacy of the green synthesized ZnO NPs against four foodborne pathogenic bacterial strains was examined using the disk diffusion assay, and Staphylococcus aureus (ATCC 8095), Pseudomonas aeruginosa (ATCC10662) and Escherichia coli (ATCC 25922) were found to be the most sensitive against biosynthesized ZnO NPs, whereas the least sensitivity was shown by Bacillus cereus (ATCC 13753). The anti-inflammatory effect was also evaluated for both ZnO NPs and the aqueous leaf extract of P. odoratissimum through the human red blood cells (HRBC) membrane stabilization method (MSM) in vitro models which includes hypotonicity-induced hemolysis. A maximum membrane stabilization of ZnO NPs was found to be 95.6% at a dose of 1000 µg mL-1 compared with the standard indomethacin. The results demonstrated that leaf extract of P. odoratissimum is suitable for synthesizing ZnO NPs, with antioxidant, antibacterial as well as superior anti-inflammatory activity by improving the membrane stability of lysosome cells, which have physiological properties similar to erythrocyte membrane cells and have no hemolytic activity. Overall, this study provides biosynthesized ZnO NPs that can be used as a safe alternative to synthetic substances as well as a potential candidate for antioxidants, antibacterial and anti-inflammatory uses in the biomedical and pharmaceutical industries.

14.
Saudi J Biol Sci ; 29(4): 2047-2055, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531173

RESUMO

Black pepper (Piper nigrum L.) is one of the oldest spices in the world, additionally, it is highly demanded. Several biotic and abiotic variables pose black pepper production worldwide. Plant-parasitic nematodes play a key role among biotic factors, causing considerable economic losses and affecting the production. Different synthetic nematicides were used for controlling plant nematodes, however the majority of pesticides have been pulled from the market due to substantial non-target effects and environmental risks. As a result, the search for alternative eco-friendly agents for controlling plant-parasitic nematodes populations. Microbial agents are a precious option. In this review the bacterial and fungal agents used as an alternative nematicides, they were studied and confirmed as essential anti-microbial agents against plant nematodes which infected Piper nigrum L. This work examines the most common plant nematodes infected Piper nigrum L., with a focus on root knot and burrowing nematodes, in addition, how to control plant parasitic nematodes using microorganisms.

15.
Saudi J Biol Sci ; 29(4): 2683-2690, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531259

RESUMO

Drought stress destructively affects the growth and productivity of sorghum crop, especially under saline soils. Therefore, Field trials were performed to determine the influence of water stress on water productivity (water productivity for grain, (G-WP) and water productivity for forage, (F-WP), yield of sorghum and soil properties in salt-affected soil (8.20 dS m-1) under different sowing dates and irrigation regimes. The summer sowing (SS) was performed on 1 April while fall sowing (FS) was established on 2 August. The irrigation regimes were; 100, 90, 80, and 70% of crop evapotranspiration (ETc). The findings displayed that the fodder and grain yields were increased by 23% and 26% under SS compared to FS over the two seasons 2017 and 2018, respectively. Among irrigation levels, the maximum values of grain and fodder yield were given by 100% of ETc, while a non-significant difference was observed between 100% and 90% of ETc. Moreover, the maximum values of G-WP (1.31%) and F-WP (9.00%) were recorded for 90% of ETc. Interestingly, the soil salinity was decreased in 0-0.6 m depth, and more decline was noted in 0-0.2 m depth using 90% of ETc. The highest salt accumulation withinside the soil profile was recorded under 70% of ETc in comparison to 100% of ETc. Thereupon, under water scarcity, application of 90% of ETc is recommended with SS to save 10% of the applied irrigation water without a significant decrease in grain yield (GY).

16.
Rice (N Y) ; 15(1): 16, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288814

RESUMO

Inoculating rice plants by plant growth promoting rhizobacteria (PGPR) may be used as a practical and eco-friendly approach to sustain the growth and yield of drought stressed rice plants. The effect of rice inoculation using plant growth hormones was investigated under drip full irrigation (FI; 100% of evapotranspiration (ETc), and deficit irrigation (DI; 80% of ETc) on growth, physiological responses, yields and water productivities under saline soil (ECe = 6.87 dS m-1) for 2017 and 2018 seasons. Growth (i.e. shoot length and shoot dry weight), leaf photosynthetic pigments (chlorophyll 'a' and chlorophyll 'b' content), air-canopy temperature (Tc-Ta), membrane stability index (MSI%), and relative water content, (RWC%) chlorophyll fluorescence (Fv/Fm) stomatal conductance (gs), total phenols, peroxidase (PO), polyphenol oxidase (PPO), nitrogen contents and water productivities (grain water productivity; G-WP and straw water productivity; S-WP) were positively affected and significantly (p < 0.05) differed in two seasons in response to the applied PGPR treatments. The highest yields (3.35 and 6.7 t ha-1 for grain and straw yields) as the average for both years were recorded under full irrigation and plants inoculated by PGPR. The results indicated that under water scarcity, application of (I80 + PGPR) treatment was found to be favorable to save 20% of the applied irrigation water, to produce not only the same yields, approximately, but also to save more water as compared to I100%.

17.
Poult Sci ; 101(4): 101716, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176704

RESUMO

Salmonellosis is a severe problem that threatens the poultry sector worldwide right now. Salmonella gallinarium and Salmonella pullorum (Fowl typhoid) are the most pathogenic serovars in avian species leading to systemic infection resulting in severe economic losses in the poultry industry. Nontyphoidal serotypes of Salmonella (Paratyphoid disease) constitute a public health hazard for their involvement in food poisoning problems in addition to their zoonotic importance. Also, Salmonella species distribution is particularly extensive. They resisted environmental conditions that made it difficult to control their spread for a long time. Therefore, the current review aimed to through light on Salmonellosis in poultry with particular references to its pathogenesis, economic importance, immune response to Salmonella, Salmonella antibiotics resistance, possible methods for prevention and control of such problems using promising antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, cinnamaldehyde, chitosan, nanoparticles, and vaccines.


Assuntos
Doenças das Aves Domésticas , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Animais , Antibacterianos , Galinhas , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Intoxicação Alimentar por Salmonella/veterinária , Salmonelose Animal/prevenção & controle
18.
Front Plant Sci ; 13: 1079260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743545

RESUMO

The application of effective microorganisms (EMs) and/or nitrogen (N) have a stimulating effect on plants against abiotic stress conditions. The aim of the present study was to determine the impact of the co-application of EMs and N on growth, physio-biochemical attributes, anatomical structures, nutrients acquisition, capsaicin, protein, and osmoprotectant contents, as well as the antioxidative defense system of hot pepper (Capsicum annum L.) plants. In the field trials, EMs were not applied (EMs-) or applied (EMs+) along with three N rates of 120, 150, and 180 kg unit N ha-1 (designated as N120, N150, and N180, respectively) to hot pepper plants grown in saline soils (9.6 dS m-1). The application of EMs and/or high N levels attenuated the salt-induced damages to hot pepper growth and yield. The application of EMs+ with either N150 or N180 increased the number, average weight and yield of fruits by 14.4 or 17.0%, 20.8 or 20.8% and 28.4 or 27.5%, respectively, compared to hot pepper plants treated with the recommended dose (EMs- × N150). When EMs+ was individually applied or combined with either N150 or N180, increased accumulation of capsaicin were observed by 16.7 or 20.8%, protein by 12.5 or 16.7%, proline by 19.0 or 14.3%, and total soluble sugars by 3.7 or 7.4%, respectively, in comparison with those treated with the integrative EMs- × N150. In addition, the non-enzymatic contents (ascorbate, and glutathione) and enzymatic activities (catalase, superoxide dismutase, and glutathione reductase) of the antioxidant defense systems significantly increased in hot pepper plants treated with EMs+ alone or combined with N150 or N180 under salt stress conditions. Higher accumulation of nutrients (N, P, K+, and Ca2+) along with reduced Na+ acquisition was also evidenced in response to EMs+ or/and high N levels. Most anatomical features of stems and leaves recovered in hot pepper plants grown in saline soils and supplied with EMs+ and N. The application of EMs and N is undoubtedly opening new sustainable approaches toward enhancing abiotic stress tolerance in crops (e.g. hot pepper).

19.
Front Nutr ; 9: 1040259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712505

RESUMO

The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.

20.
Saudi J Biol Sci ; 28(12): 7314-7326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867034

RESUMO

Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...